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SUMMARY

A temperature sensor Is descrlbed which conslsts of a silicon etalon that
is sputtered directly onto the end of an optical fiber. A two-layer protective
cap structure is used to improve the sensor's long-term stability. The sen-
sor's output is wavelength encoded to provide a high degree of Immunity from
cable and connector effects. This sensor is extremely compact and potentlally
inexpensive.

INTRODUCTION

Conslderable research has been performed to develop an accurate, compact

and inexpensive fiber-optic temperature sensor. The prlnclple advantages of

fiber-optic sensors are immunity to electrical interference, small slze, llght

welght, intrinslc safety, and chemical inertness. A disadvantage of fiber-

optic sensors is the high variability of the fiber link's transmlssivity,

which necessitates the use of Information encodlng schemes that are signal-
level insensitlve.

Fabry-Perot etalons are a particularly promlslng type of temperature sen-

sor because the measurement information is wavelength encoded and Is therefore

highly resistant to degradation due to changes in the properties of the fiber-

optic components (refs. I to 6). An etalon's reflectance is a minimum at each

of its resonant wavelengths, which, for an uncoated solid etalon, are given by
2nd/m, where n Is the etalon's refractive Index, d is its thickness, and

m is an integer. Temperature can be sensed uslng an etalon constructed of a

materlal, such as silicon, whose refractive index Is a strong function of tem-

perature. The positions of the mlnlma in the etalon's spectral reflectance

can then serve as a sensitive temperature indicator.



A Fabry-Perot etalon made from an approximately l-Nm thick piece of
single-crystal sl]Icon is used In a commercial fiber-optlc temperature sensor

(ref. 4). Manufacture of thls type of sensor requires that relatively thick
silicon wafers be etched to the desired thickness and then bonded to the end

of an optical fiber. By sputtering a silicon film directly onto the fiber

end, reduced cost, smaller slze and greater ruggedness may be obtalned.

Schulthels, et al., have described a sensor that consisted of a sputtered sill-

con fllm which was protected by a polylmlde coating (ref. 6). This paper

describes a sensor that uses a two-layer sputtered cap structure which pro-

vldes greater stability than can be obtained when an organic coating is used.

SENSOR DESCRIPTION

A critical issue in the development of a practical sputtered-film tempera-

ture sensor is its long-term stability. Due to changes in its physlcal struc-

ture, the sllIcon film's optical properties can be expected to change after

exposure to elevated temperatures. A silicon-film temperature sensor would

need to be annealed, prlor to use, at a temperature significantly higher than

the maximum temperature it will encounter in service.

A practlcal silicon-film temperature sensor also requires some type of

protective coating on its exterior surface. This protective cap structure
should provide reasonably high reflectivlty and at the same tlme block out any

stray light. To prevent long term drift due to chemical reactions, the sensor

structure must be highly stable; at the maximum temperature to which the sen-

sor will be exposed, the protective cap materlal(s) should not appreciably

react with or diffuse into the underlying silicon. The protective cap should

also block external reactants; in particular, It should act as barrier to oxy-

gen in order to prevent oxidation of the silicon.

Figure l shows, schematically, our temperature sensor, which has the fol-

1owlng three-film structure"

(I) 1.4-Nm silicon,

(2) O.14-pm silicon dloxide,

(3) l-pm FeCrAl (77.5:10.6"11.9, by weight).

The Intermediate oxlde layer is intended to prevent the constituents of the

outer metal film from diffusing into the silicon and irreversibly altering its
refractive index. The oxide film's thickness is chosen to be I/4-wave at the

sensor's deslgn wavelength of 850 nm. This causes the reflections from the
silicon-oxide and oxide-metal Interfaces to interfere constructively, thereby

maximizing the amount of light reflected back through the silicon film.

FeCrAl, like stainless steel, forms a protective scale on exposure to an oxi-

dizlng ambient, and is therefore expected to act as a barrier to oxygen to pre-

vent oxidation of the underlying silicon.

This sensor was fabricated by sputtering onto the ends of step-index mul-
timode fibers having lO0-pm core diameters and 140-pm cladding diameters.
These fibers have an approximately lO-pm thick polyimide buffer coating which
protects the fiber surface. This buffer materlal permlts these fibers to be
exposed to temperatures as high as 350 °C. In order to measure temperatures
higher than 350 °C, fibers with gold buffer layers can be used (to 650 °C),
however, these fibers are expensive.



The fiber ends were prepared for sputtering by first removlng the buffer

material from the last l In. of a l-m long piece of fiber. The polyimlde buf-

fer was first turned to ash using a butane flame, then the ash was wiped off

uslng a methanol-soaked wipe. The fiber was cleaved approximately ] mm from

the end of the remalnlng buffer material, and the cleaved ends were then

Inspected for smoothness and cleanliness using a microscope. Prlor to inser-

tion In the sputtering system, the fibers and thelr holder were ultrasonlcally
cleaned uslng delonlzed water and detergent, then rinsed under runnlng

delonlzed water, and finally blown dry with nitrogen.

The films were deposited in an RF sputtering system having three 6-In.

diameter targets. A fiber holder was used to hold the fiber ends perpendicu-

lar to the target. Without breaking vacuum, all three films were sputtered at

a power level of 200 W. The silicon and FeCrAl were sputtered in argon, while

the oxlde was sputtered in an 80:20 mixture of argon and oxygen. The fibers

were then spliced to fused-fiber couplers, as shown in figure I, so that the

reflectlvlty of the sputtered films could be monitored.

EXPERIMENTAL RESULTS

Figure 2 shows the sensor's spectral transmissivlty which was measured,

at room temperature, Immedlately after fabrication and again after the sensor

was annealed for 19 hr at 310 °C. As shown by the data plotted In figure 2,

annealing has the effect of reducing the silicon film's absorption coefficient

and refractive index. Figure 3 shows the transmlsslvity of the annealed sen-

sor at 25, 125 and 230 °C (changes In transmlsslvlty from the previous figure

are caused by the use of different fibers and connectors). As shown by fig-

ure 3, increasing the sensor's temperature Increases the silicon film's refrac-

tive Index, thereby shifting the minima In the sensor's spectral transmlsslvlty

to longer wavelengths.

In order to assess the stability of this sensor, its transmlsslvity was

monitored over the course of a 700-hr long exposure to a temperature of 230 °C.

Figure 4 shows, as a functlon of time, the position of one of the minima in

the sensor's spectral transmisslvity. The observed variations in the resonant
wavelength were determined to be caused by instabilities in our measurement

apparatus. More accurate measurements need to be performed before the long-

term stability of this sensor can be determined.

This temperature sensor is intended to be used in conjunction with an LED

source and a mlcro-optic spectrometer (ref. 3). The spectrometer uses a

2400 line/mm prism grating and a 5-mm diameter GRIN lens to disperse the sen-

sor's output spectrum across a 12-element photodiode array. The array's

active elements have a width of 80 _m and a center-to-center spacing of 140 _m.
The spectrometer's channel separation is 7.2 nm and each channel's width (FWHM)

Is 12.4 rim. Thls type of spectrometer permits the development of a compact

multi-channel sensor system in which one spectrometer analyzes the outputs

from a number of different kinds of spectrum-modulatlng fiber-optic sensors
(ref. 3).

Figure 5 shows the sensor's input and output spectra when an LED source

is used. Figure 6 shows the spectrum from the LED-powered sensor that is



Incident on each of elght spectrometer channels. These data show that the

mlcro-optic spectrometer has sufflclent resolution to analyze the sensor's

output.

A simple method of determining the sensed temperature Is to use the ratio

of the outputs from two channels. Figure 7 shows the ratio of the channel 3

and 5 outputs as a function of temperature. Alternatively, a more sophistl-

cated signal processing method, which uses the outputs from all the channels,

might be used (ref. 1). Such an approach may be able to compensate for changes

In the LED spectrum, eliminating the need for precise control of the LED's tem-

perature and permitting aged LEDs to be readily replaced.

CONCLUDING REMARKS

The three-film sensor structure described here has been shown promising,

however, its long-term stabllity has not yet been determined. Considerable

work also needs to be performed to develop the electronic hardware and signal

processing software that are needed to produce a practical instrument.
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